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An exact rear stagnation point solution is sought for a viscous, incompressible 
conducting fluid in the presence of a magnetic field. It is found that a steady soh- 
tion exists only if JV > 2, where JV = ~ B z / p a  is the interaction parameter of the 
flow based upon the normal component of the magnetic field at the wall. Here a 
is a positive rate of strain, which, for a finite body with length 1 and velocity U,, 
is of the order of U$. 

The steady solution is found, and from its existence it is inferred that separa- 
tion of the viscous boundary layer does not begin at  the rear stagnation point 
when .A’- 3 2, and that such separation can be prevented. This supports theo- 
retical work by Moreau (1964) and experimental work of Tsinober, Shtern & 
Shcherbinin (1963). 

When Jlr < 2, the flow is necessarily unsteady, and in this case an asymptotic 
analysis (as t+m) similar to that of Proudman & Johnson (1962) is undertaken. 
For JV < 1, the magnetic and non-magnetic flows are qualitatively alike, in that 
there is a growing inviscid region dominated by eddies, and an ultimately steady 
layer at  the wall representing a viscous forward stagnation point flow. 

For 1 < A’”< 2, the inviscid region again grows with time, but no eddies 
appear. It is thus suggested that for this range of JV separation occurs without 
reversed flow. 

1. Introduction 
In  plane flow of an incompressible, viscous, electrically conducting fluid over 

a solid body, the presence of a normal magnetic field a t  the surface has the effect 
of alleviating an adverse pressure gradient. One might expect that separation of 
the boundary layer would be delayed as a result. Indeed, since the degree to 
which the unfavourable pressure gradient is alleviated depends on the strength 
of the magnetic field, it is conceivable that separation could be completely sup- 
pressed. 

There is evidence which suggests that this is in fact the case. Experiments per- 
formed by Tsinober et at. (1963) on the flow of mercury past circular cylinders 
indicate that the position of the separation point is a function of the interaction 
parameter N = M2/Re ( M  = Hartmann number, Re = Reynolds number). As N 
increases from zero, the separation point moves downstream. Depending upon 
the conductivity of the cylinders, separation was reported to be completely in- 
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hibited for values of N between 1 and 3. (See, however, the discussion to follow 
in $8.) 

So far as the boundary-layer equations, and hence the possibility of separation, 
are concerned, it is the strength of the component of magnetic field normal to the 
body surface which is critical. In  a theoretical analysis of flow past a cylinder, 
therefore, the magnetic effect is exhibited most clearly by assuming that a radial 
magnetic field has been established. (The way such a field may be created in 
practice has been described by Heiser & Shercliff (1965).) 

Under these assumptions, Moreau (1964) showed that separation is prevented 
for N 3 2. He used an approximate method of Meksyn's and assumed that the 
external flow is unaffected by the magnetic field. 

A detailed numerical solution of the boundary-layer equation for the identical 
problem has been given by Fucks, Fischer & Uhlenbusch (1964) for N = 0,0-3, 1. 
They found that the angle of separation increased from 110' at  N = 0 to 144" at 
N = 1. The case N = 10 was also caIoulated and gave a separation angle of 169", 
and the authors suggest that separation is prevented only for N = co. This last 
result disagrees with the experimental findings of Tsinober et al., and the theo- 
retical work of Moresu. However, the authors state that their method loses 
accuracy as N increases, and that for N > 1 the results are not reliable. 

This paper presents further evidence that the steady boundary-layer remains 
attached for N ,  based upon the normal component of magnetic field, greater than 
or equal to 2. It is assumed that the magnetic Prandtl number pcu < 1. Then the 
induced magnetic field in the viscous boundary layer is negligible, even for large 
magnetic Reynolds numbers (BJf ) ,  as Sears (1961) has shown. 

In  contrast to the previous work on this problem, we do not need to deal with 
special geometries, such as circular cylinders.? The analysis holds quite generally 
for bodies blunt enough to be approximated by a plane wall at the rear stagnation 
point (herein abbreviated as R.S.P.). Furthermore, the magnetic field need not 
be normal at the surface. 

The approach involves the assumption that the boundary layer remains 
attached, and the flow at the R.S.P. is investigated. Equations similar to the 
'backwards' boundary layers discussed by Goldstein (1965) are involved. No 
solution to these equations exists for N < 2.1 In  the non-magnetic case, this is a 
familiar result, and indicates that the boundary layers must separate before 
reaching the R.S.P. An illuminating discussion of t)his point has been given by 
Proudman & Johnson (1962). 

For N 2 2, we present numerical results for an exact steady R.S.P. solution at 
a plane wall. In  particular, numerical results for N = 2.0, 2.5, 5, 7.5 and 10 are 
given in $5. This solution decays algebraically in the distance normal to the wall. 
In  the light of recent work by Brown & Stewartson (1965), algebraic behaviour is 
permissible in such a limiting solution, and we consider that the solution supports 
Moreau's work, and provides further theoretical foundation for the experimental 
evidence. 

Moreau also treats the flat plate for various external flows. 
$ Hardy's (1939) non-existence proof may easily be ada,pted to our problem, and shows 

rigorously that this is the case. 
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Proudman & Johnson (1962) have discussed R.S.P. flow for N = 0, for which 
the flow is necessarily unsteady. In  $7, we repeat their analysis for the magnetic 
case 0 < N < 2. In  particular, we assume that a steady R.S.P. flow has been 
established, with N 2 2. At time t = 0, the magnetic field is reduced so that N 
assumes a value less than 2, and the flow must then become unsteady. 

Although, for completeness, we have extracted the essential points of Proud- 
man & Johnson’s arguments, the interested reader is advised to familiarize him- 
self with their paper, the clarity of which can hardly be improved. 

Results analogous to those found by Proudman & Johnson were recovered for 
N < 1. More explicitly, it was found that the R.S.P. moves out to infinity in the 
direction normal to the wall. The flow near the wall is ultimately that for a forward 
stagnation point. Inviscid eddies, which grow in thickness exponentially with 
time, bridge the gap between this ultimately steady viscous layer and the R.S.P. 
flow far away. 

This picture is qualitatively different if 1 < N < 2 .  Again an inviscid region 
grows exponentially in thickness with time, and bridges the gap between the 
retreating R.S.P. and an ultimately steady viscous layer at  the wall. Now, how- 
ever, the flow in the inviscid region does not change direction, there is no reversed 
flow, and so the flow there is no longer characterized by eddies. 

In  fact, the normal velocity attained at  the outer edge of the viscous layer is 
N - 1 (for all N < 2 ) ,  which is away from the wall for N > 1. The outer boundary 
condition on the viscous layer is hence that of a R.S.P. flow with reduced normal 
velocity. As will be shown in $4, a steady viscous R.S.P. solution can exist at the 
wall with a normal velocity equal to N - 1 at infinity. Therefore, for all N ,  a steady 
viscous layer forms at the wall with this model. When N < 1, fluidmoves towards 
the wall, and, when N > 1, it moves awayfrom it. It is the character of the inviscid 
flow which changes dramatically from steady to unsteady as N passes through 2. 

It is remarkable that, for N > 1, the skin friction a t  the wall is non-zero and 
positive. Hence, if 1 < N < 2,  and the Proudman-Johnson model of the unsteady 
flow is appropriate, a phenomenon which may be identified as separation occurs 
without reversed flow. 

This is a novel point, and, if observable experimentally, could make the use of 
magnetic fields a valuable tool in studying the process of separation. 

2. Formulation of the problem 
We look for an exact solution to the problem of two-dimensional flow past an 

infinite plane wall. The co-ordinate x is measured along the wall from the stagna- 
tion point, and the y co-ordinate is normal to the plane, the fluid occupying the 
half-space y > 0. A magnetic field is imposed at the boundary at an arbitrary 
angle, 6 ,  to the x-axis. 

The equations of motion for the flow of an incompressible conducting fluid are 

(aq/at) + q .  Vq + (l/p) V p  = ( g / p )  [E x B + (q.  B) B - qB2] + vV2q, 1 (1) 
V2B = pg[q. VB - B . Vq + (aB/at)], 
v .q  = 0, 

curlE = -aB/at. 
26-2 
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Here q = (u, v) is the velocity vector, and the symbols in (1) have their usual 
meaning. 

We assume that the streamfunction $ is of the form 
- + = -  a x q y ,  t )  + aqy,  t ) ,  (2) 

where a is a constant, positive rate of strain, F ( y ,  t )  has dimensions of length, and 
g(y, t )  has dimensions of length squared. The natural length scale of the problem 
is the viscous one, (v/a)*, the time scale is evidently measured by 01-1, so that 
velocity is compared to (av)4, and pressure to pav. Introducing these normalizing 
factors into (l), with B scaled on a characteristic value B, (say), and the electric 
field referred to B,(av)*, (1) may be written 

(aq/at) + q . V q + V p  = N[E x B + (4. B)B -B'q] +V2q,  

(3) 
V2B = pgV[q. VB - B . Vq + (aB/at)], 

v.q = 0, 

curl E = - aB/at, @ = - xF(y ,  t )  + 2 cot OG(y, t).? 

All quantities appearing in (3) are dimensionless, @ being the dimensionless 
streamfunction, and P and G dimensionless functions bearing an obvious rela- 
tionship to 9 and 3. 

N = ~Bi lpa  (4) 

pav = PrM (5) 

In  (31, 

is the interaction parameter of the flow, while 

is the magnetic Reynolds number, based upon the above scalings, also known as 
eM, the magnetic Prandtl number (cf. Sears 1961). (In terms of a finite body, 
p v v  = R,/Re where the two parameters are computed on the scale of the body,) 

We assume that plcrv < 1, but N = O(1). Then, to order eaf, B is a constant 
vector, so 

and, as a consequence, E is also a constant vector = E,k (say), where k is the 
unit vector in the z-direction. 

B = cosOi+sin8j, (6) 

It is required to find a solution to (3) which satisfies the no-slip conditions 

(7) 

and which approaches the steady inviscid stagnation point solution of the equa- 
tions of motion 

as y-fco, for all t .  The steady case is dealt with first, in SQ3-6, and the unsteady 
case is further formulated and discussed in Q 7. 

From (3a), it  is seen that the fluid must leave the vicinity of the stagnation 
point in the direction of the magnetic field. 

(3a)  @ = - y(x- cot Oy) 

f The factor 2 cot 6 is inserted for convenience. 



MHDJlow at a rear stagnation point 405 

To be consistent with the assumed form of the streamfunction, the pressure 
must be of the form 

p = +Px2 + H(y, t )  + xK(y,  t )  + NE,(y cos 6 - x sin O), (8) 

where P is a constant, and must approach the inviscid pressure appropriate to 
(3a),  i.e. 

p N -~(x2+y2-Nsin28x2-Ncos28y2) 
+ NE,(y cos 8 - xsin 8)  - N sin 8 cos Oxy, (8a )  

as y-tco. Thus P = Nsin28- 1, and (3) may be written 

FVt + FF,, - FZ + N sin2 OF, - N sin2 8 + 1 = F,,,, 

K ,  i- N sin 8 cos OF, = 0, 

(9a) 

G,,+FG,,-F,G,+~tan8K-+Nsin28F+Nsin28G, = G,,,, ( 9 b )  

( 9 4  

Fgt+FF,+H,- N[2cos20G,-F~~s28] = F,,. ( 9 4  

Here subscripts denote derivatives. The last equation determines H ,  given the 

K = -Nsin8cosBF+C(t). (9 e) 

flow field, while (9c) may be integrated with result 

In order to satisfy ( sa ) ,  as y-+co, C(t) = 0. 

3. The steady viscous flow 

quantities are considered to be time-independent. 

meter based upon the normal component of magnetic field 

In  this section, the steady version of equations (9) are treated, so that all flow 

In the analysis for F and G, it is convenient to introduce the interaction para- 

JV = N sin28. (10) 

The results of the previous section show that the steady viscous flow must 
satisfy the equations: 

F”- FF” + F ’ 2 -  1 -M(F’- 1) = 0, (1 la )  

G” - FG + F‘G‘ +N(F - G’) = 0, (1lb)  

H’ = Ff -FF’+M~~t28[2C’ -F]?  ( 1 1 4  

K = -McoteF, ( 1 1 4  

with boundary conditions 
F(0) = F’(0) = G‘(0) = 0, 

P + l ,  G + 1  as y+m. 

Primes denote derivatives with respect to y. 

that solution may be written down directly in terms of P. Put 
Once F has been determined, G is found from the linear equation (1 1 b) .  In  fact 

G ’ =  F + g ;  (13) 
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then g(0) = 0, g+O as y+m,  

and 9’’ - Fg’ + (F‘ - N )  g = - F“. (14) 

As with the case of magnetohydrodynamic stagnation point flow at a point of 
attachment (Ludford 1963), and with the analogous non-magnetic case (Glauert 
1956), 

g1 = W Y )  
is one complementary function. A second may be constructed from it, viz. 

(15) 

The solution to the boundary-value problem for g is then 

Convergence of the integrals is assured by the asymptotic behaviour of F as found 
below. 

To investigate the asymptotic behaviour of (1 1 a), put 

F = y + f ,  
where f = o(y) as y +co, and 

f” - yf” + (2-X)f’  = ff” -fZ, (19) 

and for large y the terms on the right-hand side are negligible compared with 
those on the left. 

Two independent solutions of (19) forf’ are 

As y-fco, (20) is asymptotic to 

and (21) to e b Z  yN-3 (1 + o(Y-2)l. 
The last solution diverges with y, as does (20) if Af < 2. However, if X 2 2, a 

solution may be possible which behaves like 

for large y. 
Results of this kind were found by Goldstein (1965) for similar equations. That 

no solution exists for X < 2 may be confirmed by a rigorous non-existence proof 
given by Hardy (1939). To verify that Hardy’s proof applies to our (slightly 
different) equation is a simple matter, and so we do not demonstrate it here. If 
X >  2, however, the proof fails. This, and the asymptotic behaviour of the 
governing equations, suggest that a solution may exist for this case. In  fact, 

F N y+Aekva~,-.,?-(y) (22) 



MHDJlow at a rear stagnation point 407 

rigorous existence and uniqueness results have been obtained by Leibovich (1967) 
for Jtr 3 2, and will be presented elsewhere. Some numerical results for this case 
are given in $5. 

Before concluding this section, it should be pointed out that the asymptotic 
analysis can be repeated with a relaxed boundary condition. In  particular, it is 
consistent with equations ( l l a )  to assume that PI+%/= A”- 1 as y-tw if 
Jf < 2 (but obviously no other Xis acceptable). The asymptotics suggest that 
there is a solution to this problem for Jtr < 2, and in fact existence and uniqueness 
can be proved in the same way as in Leibovich (1967). Of course, for Jlr = 3 this 
problem and the central one posed in (1 1) and (12) coincide. 

It might be thought that there could be a steady, inviscid layer which could 
provide a transition from the R.S.P. flow with F’ = 1, and the viscous layer with 
F’ --f N- 1, when Jf < 2. Such a layer would be a steady counterpart of the un- 
steady inviscid layer found by Proudman & Johnson (1962) and further discussed 
in $7 of this paper. The next section, however, shows that no such steady layer 
can exist, and that therefore if Jtr < 2 there is no steady R.S.P. solution. 

4. Steady inviscid stagnation point flow 
The steady inviscid flow, that is, the flow far from the wall, satisfies (9) with the 

right-hand sides and time derivatives set equal to zero. The principal boundary 
conditions to be satisfied are 

(23) Fi(0) = Gi(0) = 0, 

where the subscript identifies inviscid quantities. The second of these conditions 
is required since u = v = 0 at the inviscid stagnation point x = y = 0. 

The two equations for the streamfunction are 

FiF;-F;2+A”Fi = Jtr- 1, ( 2 4 4  

Fit?; - FiG; + JlrGi = N&, P 4 b )  

z & - = z 2 - N z + N - l ,  

and (24a) may be written as 

(25) 
dz 
d Fi 

The solution to (25) is therefore 
where z = Fi. 

where k is a constant. If Jtr < 2, k = 0, since z = 1 at Fi = 00. The solution in this 

(27) 
case is therefore 

and so there is no steady inviscid layer which can provide the transition between 
the viscous layer and an R.S.P. flow at infinity for JV < 2. 

4 = y, 
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5. The numerical solution 

F‘” < 0 for all y, and then proceed following Coppel (1960). Consequently, 
We assume that F ”  > 0 throughout,? then P 0, and 0 6 F‘ c 1, and 

FF”-+F’2 < 0 

since it is a decreasing function of y, as may be seen by differentiation, and is 

(28) 
initially zero. Thus 

Put F’ = x ,  F” = w, then (28) is equivalent to 

3”” Q l - + F “ - N ( l - P ‘ ] .  

w- dw < 1-+22-N( l -z ) .  
dz 

Consider the function w*(z) for which the equality holds, and w*( 1) = 0, 

W * Z =  N ( X -  1 ) 2 + g ( i - ~ 3 ) + 2 ( 2 - 1 ) .  (30) 

But dw2/dz < dw*2/dz, and w*(l)  = w(1); therefore w2 2 w * ~  in the interval 
O Q z G l .  

Hence F”(0) 2 (N-$)k (31) 

F” 2 l - F ” - N ( l - F ’ ) .  Similarly, 

Again, a w* may be found, and, since dw*2/dx G dw2/dz, w < w* in 0 < x Q 1. In 

(32) 
this way we find 

F”(0) < (N--$)*. 

Equations (31) and (32) furnish a valuable aid to the numerical calculations. 
It should be emphasized, however, that they hold only for solutions in which 
F ” > 0 for all y. 

The numerical results are summarized in the table below, which gives F”(0) 
for N = 2.0, 2-5, 5.0, 7.5, 10.0: 

N 2.0 2-5 5.0 7.5 10.0 

P”(0) 0.768 1.025 1.874 2.451 2.916 

The most interesting feature of this table is that F”(0) does not vanish at the 
critical value JY. = 2. Since the flow separates for Jzr < 2, this implies either that 
F”(0) does not depend continuously on N, or that, separation occurs without 
reversed flow. In  $7,  it is suggested that the latter is the case. 

6. Asymptotic solution for large N 

the wall y = 0. Accordingly, we set 
As M+m, the solution to (19a) is F’ = 1, except in the immediate vicinity of 

F = Y +f( Y )  (33) 

and Y = N+y, (34) 

t It can be seen directly from the differential equation that there is no solution for 
P’’(0) < 0 (or see Leibovich 1967). 
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and seek an asymptotic expansion for f in the form 
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f = Jv-n+q f,( Y ) .  
1 

The procedure is straightforward, and yields the following expansion for the 
skin friction P ” ( O ) ,  

F”(0) = xi - $N-~ + O(M-%). (35) 

With JV = 10, (35) gives 2.924 for B”(O),  which differs from the exact value 
given in the last section by less than 1%. 

It was noticed in the numerical computations that, as JV increased, P”(0) 
approached the mean of the bounds (31) and (32). This tendency is confirmed by 
(35) at least to O ( N - % ) ,  since to this order (34) agrees with the mean of (31) and 
(32). 

7. Separated flow Jtr < 2 

For clarity, we suppose that a steady, attached flow has been established, with 
M 2 2. At t = 0 + , the magnetic field strength is reduced so that JV assumes a 
constant value less than 2. From our previous remarks (§§3,4) a steady rear 
stagnation point flow cannot then be re-established. 

Equations (9a-e) govern the unsteady flow, and are the magnetic counterparts 
of Proudman & Johnson’s (1962) equation (6). Furthermore, the boundary con- 
ditions ( la)  apply to the unsteady case for all finite t .  

Initially, F and G describe a steady R.S.P. flow as may be found from the 
previous sections. 

For small t ,  the solution may be obtained by linearizing about the initial flow 
and then iterating. This corresponds to the classical Blasius (1908) method. For 
a flow which is initially potential motion, that is, started from rest, this procedure 
has been carried out by Tsinober et al. (1963). 

Here, we attempt to give a description of the flow for large t, following the 
approach of Proudman & Johnson. 

We briefly review their argument as to the rationale of looking for a solution 
for t large. The natural length scale in the problem at hand involves the viscosity. 
For any fixed finite t, however large, the thickness of the domain of flow at hand, 
possibly containing reversed flow and eddies, is arbitrarily small compared with 
the body scale as v+O. Since the non-dimensional time does not involve the 
viscosity it is concluded that effect of separation upon the external flow cannot 
begin (in the limit v+ 0 )  at finite t. 

One anticipates that the length scale of the flow normal to the wall would in- 
crease continually with time under the influence of the convection field. The effect 
of viscosity would then diminish over most of this stretched-out flow; and it 
seems reasonable to assume that the situation for t large can be represented 
asymptotically by inviscid equations except within distances of O( 1) from the 
wall. 
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Accordingly, we consider (9a ,  b)  with the right-hand sides set equal to zero, and 
follow Proudman & Johnson in seeking a similarity solution of the form? 

R?/, t )  = W )  f ( r ) ,  G&, t )  = W g ( r ) ,  r = Y / W .  (36 )  

Introducing ( 9 e )  and (36 )  into ( 9 a ,  b) ,  we find 

( ~ / h ) ( - y f ” ) - f ’ 2 + f f a + M f ’ - - ~ + I =  0, 

(i/4 [9 - W’I +f9’ - f  ’9 + J l r (g  -f) = 0. 

A similarity solution is possible if we take 

h = eM ( k  = constant), (37 )  

( f -ky) f”- f ’2+Mf’-M+l= 0, ( 3 8 4  

( f - k l l ) g ’ + ( J V + k - f ’ ) g  = Mf.  (386)  

f ’ + l ,  g’+l  as y-tco. (39 )  

and the governing equations take the form 

In terms off and g ,  the boundary conditions a t  infinity are 

As Proudman & Johnson point out, in (x,r)-space, the whole of the region of 
(x, y)-space representing finite values of y shrinks to a thin layer on the boundary. 
Therefore, the kinematic condition of no normal velocity should be applied to 
(38), and so 

(40) f(0) = 0. 

An immediate first integral of (38a)  is obtainable; and, so far as f is concerned, 
we content ourselves with deductions which may be drawn from it. The integral 
is 

where, of course, we are specifically interested in the case M < 2. 
Since 2-J l r  > 0, and f N 7 as r]+co, it  is necessary to require k 2 1. This 

restriction is identical with that imposed in the non-magnetic case. We may 
further note that, as in the non-magnetic case, k = 1 is the only value for which 
vorticity decays exponentially away from the boundary. In  our case, there is no 
apparent reason that a flow with exponential decay is selected. 

A t  7 = 0, f = 0, which implies the main result of this section, 

f’(0) = N- 1, (42) 

unless A = 00. The possibility A = 00 may be ruled out, however, since no steady 
viscous solution is possible forf’(0) 2 1 and M < 2. Notice that a steady viscous 
solution is to be expected near the wall, since ultimately the boundary conditions 
on such a layer are steady. Therefore A < co, and (42) must hold. 

When 1 < N < 2, (42) implies that fluid flows away from the wall as it leaves 
the viscous region. In  fact (42) requires P - ( M -  1)y  as y+co in the viscous 

t f(7) and g(7)  should not be confused with thef(y) and g(y) which appear in the sections 
on steady flow. 



MHD $om at a rear stagnation point 41 1 

layer. From the remarks in $3, there does exist a steady viscous solution ap- 
proaching ( M -  1)y as y+m. 

It would therefore appear that, when 1 < N < 2, a phenomenon which could 
be labelled ‘separation’ occurs in the Proudman-Johnson framework, without 
reversed $ow. 

In  fact, reversed flow would only occur with M < 1. (When JV = 1, the skin 
friction at  the wall vanishes.) In  this event, (42) shows that there is an inviscid 
flow towards the wall as it is approached, and the picture is similar to the non- 
magnetic one, to which it reduces when N = 0. The inviscid domain is one of 
growing eddies which perform the transition between a forward stagnation point 
flow near the wall, and a R.S.P. flow far away. The question of whether there is a 
steady forward stagnation point solution to our equations is answered in the 
affirmative by, for example, Ludford (1963). 

A solution for g satisfying the first-order linear equation (38b) and the boundary 
condition (39) can be easily written down in terms off if desired. 

8. Discussion 
(a) Steady R.S.P. $ow 

In  $53-6, it was shown that boundary-layer separation does not begin a t  the rear 
stagnation point if JV > 2. 

A simple physical argument can be advanced to show why a R.S.P. flow may 
be possible for M $: 0, when none exists for JV = 0.t A fluid particle acquires 
rotation as it enters a viscous boundary layer. Consider those particles which 
travel near the ‘outer edge’ of the layer, i.e. at large values of the boundary- 
layer co-ordinate y. If R.S.P. flow exists, then this fluid must be the &st to pass 
out of the viscous region at  the R.S.P. In  typical boundary layer flows, however, 
u.yyy and uy are of the same sign for large y; hence, the viscous forces produce 
vorticity at  the ‘outer edge’, which is always in the same direction. Thus, the 
fluid travelling in the viscous region, but far from the wall, has its vorticity in- 
creased, But, to leave the boundary layer, the fluid must lose its vorticity, and, as 
we have seen, for JV = 0, the only mechanism available, viscosity, does not serve 
this purpose. Therefore fluid cannot pass from the viscous layer into the irrota- 
tional external flow, and it thus appears that R.S.P. flow will not occur. 

For JV + 0, the external inviscid stream may have electromagnetically ac- 
quired vorticity. Nevertheless, fluid particles must lose excess vorticity generated 
by viscous effects before entry into the inviscid stream is possible. It is well known 
(e.g. Shercliff 1965) that magnetic fields can provide a means for damping 
vorticity . 

This effect is easily seen in our case. If we take the simplest case, 6’ = Qn, as an 
example, the Helmholz equation for the single ( 2 )  component of vorticity (Q) 
takes the form DQ a2Q 

-= -JVQ++. 
Dt 

t The author is indebted to Professor F. K. Moore for providing this explanation of the 
non-existence of R.S.P. flow in the non-magnetic case. 
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If the viscous term here is ignored, it is evident that vorticity decays exponen- 
tially with distance traversed along a streamline, with a relaxation time pro- 
portional to N. Hence vorticity is created a t  the wall and diffused into the fluid 
by viscous forces, and is destroyed by interaction with the magnetic field. 

Apparently, when JI/’ > 2, the magnetic field is capable of damping all of the 
viscosity-generated vorticity before a particle passes out of the viscous region. 
The physical significance of the particular value Jlr = 2, however, is still obscure. 

(b) A critique of the experiment on M H D  boundary-layer separation 

It should be pointed out that there is some doubt about exactly what the experi- 
mental data reported by Tsinober et al. represents. Neither Moreau’s work nor 
that presented here indicates a dependence on the body conductivity such as 
is shown by the experimental data. 

One obvious reason for this is due to the fact that, in the analysis, &‘is based on 
the magnetic field which obtains at the solid boundary, and the experimental 
findings reported are based upon the applied field. Conductivity of the cylinders 
can affect the overall distribution of magnetic field, especially when the fluid and 
body are good conductors. 

In  fact, the applied field in the experiment was transverse to the undisturbed 
stream, and presumably the normal component of magnetic field vanished at  the 
R.S.P. As explained below, there are reasons to suspect that N ,  based on the 
applied field, was actually considerably larger than 2. In  this event, Jt/’ > 2 over 
a large portion of the rear of the cylinder, and this may be sufficient to prevent 
separation from being observed. Of course, attached flow at the R.S.P. is not 
actually possible for iV < 2,  as we have shown. 

Furthermore, the experiment utilizes the fact that tin and bismuth, from which 
the cylinders were manufactured, dissolve in mercury. The separation line, which 
divides the laminar upstream flow from the eddying separated flow, is apparently 
thereby made visible. The values of N for which separation was reported in- 
hibited were based on the properties of mercury, although it is evident from the 
analysis here that N should be based upon the properties of the fluid adjacent to 
the solid. Presumably in the experiment, that fluid is an amalgam of mercury and 
either tin or bismuth, with properties which are not known. 

( c )  Unsteadyflow at the R.S.P. 
If  the Proudman-Johnson model is appropriate as t -+ co, then separation occurs 
with positive skin friction and without reverse flow when 1 < 

Reversed flow and negative skin friction occur for N < 1, and the results of 
Proudman & Johnson are recovered for JI’ = 0. 

Since separation has always been associated with the onset of reversed flow, 
snd since the magnetic field clearly provides a means of controlling the boundary 
layer, the results obtained here suggest that magnetic fields may be used.to ad- 
vantage in experiments designed to study the fundamentals of the separation 
process. 

< 2. 
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